${ }^{\text {a }}$ Faculty of Medical and Pharmaceutical Sciences, Kumamoto University 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
${ }^{\mathrm{b}}$ Department of Applied Chemistry, Faculty of Science and Technology, Keio University Yokohama 223-0061, Japan
E-mail: motsuka@gpo.kumamoto-u.ac.jp Received December 19, 2007

Conophylline is a bisindole alkaloid of unique structure that shows anti-cancer and anti-diabetic activities. Two indole core structures of conophylline, namely 6,7-dimethoxy-5-methoxymethoxy-1Hindole (1), and N-benzoyl- N-[2-(6-methoxymethoxy-2-vinyl-1 H-indol-3-yl)ethyl]amine (2) has been synthesized starting with substituted benzene derivatives.
J. Heterocyclic Chem., 45, 1803 (2008).

INTRODUCTION

Conophylline is a bisindole alkaloid isolated from the leaves of the tropical plant Tabernaemontana divaricata [1]. It shows anti-cancer activity against cells that express K-ras [2] and, more recently, effect on diabetes was disclosed [3]. We were interested in the anti-diabetic effect of conophylline that was unprecedent as a bisindole and considered that conophylline could be a new lead for the drugs and therapies toward diabetes.

Conophylline

Figure 1

Conophylline has a unique structure comprising two indoles segmented via a central dihydrofuran [4]. The dihydrofuran seems crucial for the effect on diabetes, determining the spatial relationships of the indoles of both
sides [3]. Our synthetic plan is to synthesize the left and the right indoles and assemble the two by constructing the central dihydrofuran. Herein we report a facile synthesis of trisubstituted indole $\mathbf{1}$ of the left wing and the right indole 2 appropriately functionalized and protected for the further elaboration.

RESULTS AND DISCUSSION

Synthesis of 6,7-dimethoxy-5-methoxymethoxy-1Hindole (1). As the left indole of conophylline has an array of two methoxyl and a hydroxyl substituents on the benzene ring, we started the synthesis of compound $\mathbf{1}$ with symmetrically substituted methyl 3,5 -dihydroxy-4methoxybenzoate $\mathbf{3}$ [5]. Compound $\mathbf{3}$ was dissymmetrized by the mono-nitration according to the method of Anuradha et al. using nickel nitrate [6] to give nitro derivative 4 in 70% yield. The differentiation of the two hydroxyl groups of compound 4 was successfully achieved as follows. The higher acidity of the hydroxyl group para to the nitro group of compound $\mathbf{4}$ facilitated the regioselective protection to give mono-methoxymethyl ether 5 in 54% yield (with 31% recovery of 4). The remaining hydroxyl group was methylated with dimethyl sulfate to give dimethoxyphenol derivative 6 that is equipped with all necessary substituents on the left wing phenyl moiety in 97% yield. After extensive attempts including the conventional Fischer indole synthesis, the left wing indole was found to be accessible by the Magnus procedure [7], the cyclization of dinitro compound 9. Thus, methyl ester 6 was treated with NaBH_{4} to give (without reducing the nitro group) alcohol

7 (78\% yield) that was further converted into the corresponding aldehyde $\mathbf{8}$ by MnO_{2} oxidation (95% yield). The aldehyde $\mathbf{8}$ was condensed with nitromethane under the classical Henry reaction condition to give dinitro compound 9 in 92% yield and the subsequent reductive cyclization [7] proceeded smoothly to afford the desired 6,7-dimethoxy-5-methoxymethoxy-1 H -indole (1) in 72% yield.

Scheme 1

Reagents and conditions; a) $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, PTSA, acetone; 70%, b) $\mathrm{MOMCl}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t.; 54% (31%; recovery), c) $(\mathrm{MeO})_{2} \mathrm{SO}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, reflux; 97%, d) NaBH_{4}, THF, $0^{\circ} \mathrm{C}$ to r.t.; 78%, e) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; $\left.95 \%, f\right) \mathrm{MeNO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$; then $\left.\mathrm{NaOAc}, \mathrm{Ac}_{2} \mathrm{O}, 50^{\circ} \mathrm{C} ; 92 \%, g\right) \mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{HOAc}, \mathrm{H}_{2}, \mathrm{MeOH}$, r.t.; 72%.

Synthesis of N-benzoyl- N-[2-(6-methoxymethoxy-2-

 vinyl-1H-indol-3-yl)ethyl]amine (2). The right indole 2 was synthesized by the Weidmann procedure [8], by cyclization of the azide compound 11. Thus, 4(methoxymethoxy)benzaldehyde (10) [9] was coupled with azidoacetate under strongly basic condition to give azide 11 in 74% yield. It was gratifying that the compound 11 gave indole $\mathbf{1 2}$ quantitatively simply by heating at reflux in toluene. The Vilsmeier formylation [10] was performed and aldehyde $\mathbf{1 3}$ was obtained in 56% yield (with 40% recovery of 12) Condensation of aldehyde $\mathbf{1 3}$ with nitromethane was carried out according to the procedure of Young [11a] and Rodríguez [11b] and the subsequent olefin reduction was feasible by using $\mathrm{NaBH}_{4}[11 \mathrm{~b}, 11 \mathrm{c}, 11 \mathrm{~d}]$ to give nitro compound 14 with an intact nitro group in 76% overall yield [12]. Reduction of the nitro group of $\mathbf{1 4}$ was carried out by hydrogenation with Pd / C and the resulting tryptamine was immediately protected by a benzoyl group in order to avoid the problematic lactam formation, affording the desired benzamide $\mathbf{1 5}$ in 77% yield. The methyl ester $\mathbf{1 5}$ wastransformed to aldehyde 17 by LAH reduction (89% yield) followed by MnO_{2} oxidation (quantitative). The subsequent Wittig reaction of aldehyde 17 gave N -benzoyl- N -[2-(6-methoxymethoxy-2-vinyl-1H-indol-3yl)ethyl]amine $\mathbf{2}$ in 81% yield.

Thus, the left and the right indoles of conophylline are now available in good overall yields. We are engaging in the side chain elaboration of the left indole 1 for the construction of the dihydrofuran junction between the left and the right indoles.

Reagents and conditions; a) $\mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to r.t.; $74 \%, b)$ toluene, reflux; quant., c) $\mathrm{POCl}_{3}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} ; 56 \%$ (40%; recovery), d) $\mathrm{MeNO}_{2}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH}$, r.t.; then NaBH_{4}, DMF, $0^{\circ} \mathrm{C} ; 76 \%$, e) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH}$, r.t.; then $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} ; 77 \%, f\right)$ LAH, THF, $\left.0^{\circ} \mathrm{C} ; 89 \%, g\right) \mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; quant., $h) \mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}$, KHMDS, THF, toluene, reflux; 81%.

EXPERIMENTAL

Solvents and reagents were reagent-grade, purchased from commercial suppliers, and used without further purification unless otherwise stated. All products were dried under vacuum before anal. characterization. Column chromatography (CC): silica gel $(60 \mathrm{~N}$, spherical, neutral; KANTO CHEMICAL CO, $I N C$), aluminium oxide (activated, neutral, Brockmann I, standard grade, ~ 150 mesh, $58 \AA ; A L D R I C H)$. TLC: silica gel 60 F_{254} (on glass; Merck), aluminium oxide $60 F_{254}$ (on plastic sheet; Merck), visualization by UV light at 254 nm or staining with a soln. of $\mathrm{H}_{3}\left(\mathrm{PMo}_{12} \mathrm{O}_{40}\right) \cdot n \mathrm{H}_{2} \mathrm{O}$ in EtOH. M.p.: Yanagimoto Melting Point Apparatus; uncorrected. Optical rotations: JASCO DIP-1000 digital polarimeter. IR spectra: JASCO IR A-100 FTIR spectrometer; in cm^{-1}. NMR spectra (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right): J E O L$ $J N M-A L 300(300 / 75 \mathrm{MHz}$, resp.) spectrometer; J in Hz, δ in ppm rel. to residual solvent signals, spectra were recorded at
$25^{\circ} \mathrm{C}$. EI- and FAB-MS: JEOL JMS-BU20, JEOL JMS-700 mass spectrometers; in m / z.

Methyl 3,5-dihydroxy-4-methoxy-2-nitro-benzoate (4). PTSA ($190 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added to a solution of methyl 3,5-dihydroxy-4-methoxybenzoate (3) [5] ($1.98 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(3.19 \mathrm{~g}, 11 \mathrm{mmol})$ in anhydrous acetone (80 mL) at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring for 2 h , about half amount of acetone was removed in vacuo. The top clear layer of the resulting mixture was immediately applied to column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $1.70 \mathrm{~g}(70 \%)$ of 4 as a yellow amorphous solid. $\mathrm{R}_{\mathrm{f}} 0.38(\mathrm{AcOEt} / n$-hexane $2 / 1)$. M.p. $139 \sim 140{ }^{\circ} \mathrm{C}$. IR (nujor): 3182, 2856, 1711, 1594, 1550, 1447, 1365, 1307, 1253, 1105, 1020, 988, 922, 870, 675, 607. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right), 4.04(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCO}_{2} \mathrm{CH}_{3}\right), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 53.4$, $61.3\left(\mathrm{CH}_{3}\right), 108.5(\mathrm{CH}), 126.2,127.8,135.7,149.7,155.1,166.6$ (C). HR-MS(EI) for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right)$, calcd. 243.0379, found 243.0383. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{7}: \mathrm{C}, 44.45, \mathrm{H}, 3.73, \mathrm{~N}$, 5.76. Found: C, $44.18, \mathrm{H}, 3.77, \mathrm{~N}, 5.97$.

Methyl 3-hydroxy-4-methoxy-5-methoxymethoxy-2-nitrobenzoiate (5). To a solution of compound $\mathbf{4}(486 \mathrm{mg}, 2.0 \mathrm{mmol})$ and 2,6-lutidine ($304 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, a solution of $\mathrm{MOMCl}(167 \mu \mathrm{~L}, 2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was dropwised at $0^{\circ} \mathrm{C}$. After stirring for 10 h at r.t., $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added to the reaction solution. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, starting solution of crude was added $0.5 \% \mathrm{HOAc})$ to afford $310 \mathrm{mg}(54 \%)$ of 5 as a yellow solid along with 151 mg of compound 4 (31% : recovery), (recovery yield of $\mathbf{5}, 78 \%)$. $\mathrm{R}_{\mathrm{f}} 0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. M.p. 90~91 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3372, 2959, 1722, 1590, 1545, 1339, 1269, $1242,1066,1003,867,775,763,735,613 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right), 3.97(3 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCO}_{2} \mathrm{CH}_{3}$), $5.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 6.97(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}(6))$ 9.91 (br, PhOH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 53.3,56.8,61.3\left(\mathrm{CH}_{3}\right)$, $95.0\left(\mathrm{CH}_{2}\right), 108.2(\mathrm{CH}), 125.6,128.6,139.4,149.1,154.8,166.0$ (C). HR-MS(EI) for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{8}\left(\mathrm{M}^{+}\right)$, calcd. 287.0641, found 287.0629. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{8}: \mathrm{C}, 46.00, \mathrm{H}, 4.56, \mathrm{~N}$, 4.88. Found: C, $46.00, \mathrm{H}, 4.55, \mathrm{~N}, 4.96$.

Methyl 3,4-dimethoxy-5-methoxymethoxy-2-nitrobenzoate (6). A mixture of compound 5 ($144 \mathrm{mg}, 0.5 \mathrm{mmol}$), $(\mathrm{MeO})_{2} \mathrm{SO}_{2}(56.8 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.0 \mathrm{mmol})$ in acetone (10 mL) was stirred at reflux for 12 h under Ar atmosphere. The resulting mixture was then filtered, and the filtrate was evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and the organic layer was dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $147 \mathrm{mg}(97 \%)$ of 6 as a pale yellow amorphous. $\mathrm{R}_{\mathrm{f}} 0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (M.p. $63 \sim 64{ }^{\circ} \mathrm{C}$. IR (neat): 3133, $2870,1735,1543,1339,1233,1156,1111,1068,1012,978$, 923, 870, 807, 739. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ~ \delta: 3.53(3 \mathrm{H}, \mathrm{s}$, $\mathrm{PhOCH}_{2} \mathrm{OCH}_{3}$), $3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right)$, $3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhCO}_{2} \mathrm{CH}_{3}\right), 5.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 7.52(1 \mathrm{H}$, s, H-C(6)). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 52.9,56.6,61.3,62.6\left(\mathrm{CH}_{3}\right)$, $95.2\left(\mathrm{CH}_{2}\right), 112.7(\mathrm{CH}), 117.8,141.0,145.9,147.2,151.6,163.0$ (C). HR-MS(EI) for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{8}\left(\mathrm{M}^{+}\right)$, calcd. 301.0798, found 301.0775 .
(3,4-Dimethoxy-5-methoxymethoxy-2-nitrophenyl)methanol (7). To a solution of compound $6(120 \mathrm{mg}, 0.4 \mathrm{mmol})$ in
anhydrous $\mathrm{MeOH}(4 \mathrm{~mL}), \mathrm{NaBH}_{4}(152 \mathrm{mg}, 4.0 \mathrm{mmol})$ was added little by little at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring for 3 h at r.t., the reaction solution was cooled to $0^{\circ} \mathrm{C}$ and neutralized with 1 NHCl . The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, and the combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on aluminium oxide $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $85.2 \mathrm{mg}(78 \%)$ of 7 as a yellow oil. R_{f} $0.09\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2946, 1577, 1540, 1490, 1457, 1399 , 1362, 1327, 1249, 1155, 1112, 964, 923, 881, 801. ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 3.92(3 \mathrm{H}, \mathrm{s}$, PhOCH_{3}), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}$), 4.61 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OH}$), 5.28 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 7.07(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 56.5,61.1,62.3\left(\mathrm{CH}_{3}\right), 61.1,95.0\left(\mathrm{CH}_{2}\right), 111.6(\mathrm{CH}), 129.6$, 139.1, 142.7, 146.8, 153.0 (C). HR-MS(EI) for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right)$, calcd. 273.0840, found 273.0848 .

3,4-Dimethoxy-5-methoxymethoxy-2-nitrobenzaldehyde (8). A mixture of compound $\mathbf{1 3}$ ($54.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and MnO_{2} (174 mg 2.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred at r.t. for 3 h under Ar atmosphere. The resuting mixture was then filtered through Celite, and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated in vacuo, and the residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 51.7 mg (95%) of $\mathbf{8}$ as pale yellow oil. $\mathrm{R}_{\mathrm{f}} 0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 3336, 1703, 1577, 1543, 1490, 1460, 1390, 1367, 1328, 1254, 1156, $1111,1060,1013,963,924,879 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.54(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right)$, $5.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 7.46(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}(6)), 9.85(1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 56.7,61.4,62.6\left(\mathrm{CH}_{3}\right), 95.2$ $\left(\mathrm{CH}_{2}\right), 111.6,185.7(\mathrm{CH}), 122.9,141.0,146.1,148.5,152.6$ (C). HR-MS(EI) for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right)$, calcd. 271.0665, found 271.0692.

2,3-Dimethoxy-1-methoxymethoxy-4-nitro-5-(2-nitroethenyl)benzene (9). Compound $\mathbf{8}(27.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in 55% solution of MeNO_{2} in $\mathrm{MeOH}(1 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(10 \mu \mathrm{~L})$ was added to this solution at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring for 2 h at the temperature, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction solution. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$, and this combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$, and $\mathrm{NaOAc}(0.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added to this solution. This mixture was stirred for 3 h at $50^{\circ} \mathrm{C}$ under Ar atmosphere, and $\mathrm{H}_{2} \mathrm{O}$ was then added to the resulting mixture. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$, and this combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 29.0 mg (92%) of 9 as a yellow amorphous. $\mathrm{R}_{\mathrm{f}} 0.63\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. M.p. $56 \sim 57^{\circ} \mathrm{C}$. IR (neat): $3109,2957,1638,1576,1533,1490,1343$, 1273, 1223, 1171, 1092, 1014, 967, 922, 840. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{3}\right), 4.00(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{PhOCH}_{3}\right), 5.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2} \mathrm{OCH}_{3}\right), 7.13(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}(6))$, $7.46\left(1 \mathrm{H}, \mathrm{d}, J=13.55 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{C} H=\mathrm{CHNO}_{2}\right), 7.85(1 \mathrm{H}, \mathrm{d}, J=$ $\left.13.55 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}=\mathrm{CHNO}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 56.7,61.4$, $62.5\left(\mathrm{CH}_{3}\right)$, $95.4\left(\mathrm{CH}_{2}\right), 109.2,118.2,139.6(\mathrm{CH}), 131.7,141.2$, 146.3, 146.8, 153.0 (C). HR-MS(EI) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}^{+}\right)$, calcd. 314.0750, found 314.0729. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 45.86, H, 4.49, N, 8.91. Found: C, 45.93, H, 4.45, N, 8.74.

6,7-Dimethoxy-5-methoxymethoxy- 1 H -indole (1). A mixture of compound 9 ($31.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \%$, $3.1 \mathrm{mg})$ in $\mathrm{HOAc} / \mathrm{MeOH}(17 \%, 1 \mathrm{~mL})$ was stirred at r.t. for 5 h under H_{2} atmosphere. The mixture was then filtered through

Celite, and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated NaHCO_{3} and brine. The organic layer was dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo, and the residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $17.0 \mathrm{mg}(72 \%)$ of 1 as a white solid. $\mathrm{R}_{\mathrm{f}} 0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. M.p. $74 \sim 75{ }^{\circ} \mathrm{C}$. IR (KBr): 3341, 3109, 2932, 1581, 1464, 1311, 1221, 1141, 1109, $1060,1031,990,906,873,852,749,591,560 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2} \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.07(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ArOCH}_{3}\right), 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2} \mathrm{OCH}_{3}\right), 6.43(1 \mathrm{H}, \mathrm{dd}, J=2.56$, $2.56 \mathrm{~Hz}, H-\mathrm{C}(3)), 7.11(1 \mathrm{H}, \mathrm{s}, H-\mathrm{C}(4)), 7.13(1 \mathrm{H}, \mathrm{dd}, J=2.56$, $2.56 \mathrm{~Hz}, H-\mathrm{C}(2)), 8.19(\mathrm{br}, H-\mathrm{N}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 56.1$, $61.0,61.5\left(\mathrm{CH}_{3}\right), 96.4\left(\mathrm{CH}_{2}\right), 102.8,102.9,124.1(\mathrm{CH}), 123.8$, $125.5,138.6,138.8,146.3$ (C). HR-MS(EI) for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$, calcd. 237.1004, found 237.1001.

Methyl (Z)-2-azido-3-(4-methoxymethoxyphenyl)propenoate (11). To anhydrous $\mathrm{MeOH}(150 \mathrm{~mL})$, Na metal (4 g) was added at $0^{\circ} \mathrm{C}$, and stirred at the temperature to finish the resolution. To this solution, a solution of 4-(methoxymethoxy)benzaldehyde (10) [9] ($9.96 \mathrm{~g}, 60 \mathrm{mmol}$) and methyl azidoacetate ($20.7 \mathrm{~g}, 180 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(50 \mathrm{~mL})$ was dropwised at $-10^{\circ} \mathrm{C}$ under Ar atmosphere, and warmed to r.t. gradually. After sitirring for 12 h at r.t., the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and added ice cold $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. MeOH was removed in vacuo, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $11.2 \mathrm{~g}(74 \%)$ of $\mathbf{1 1}$ as a yellow amorphous. R_{f} $0.74\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2953, 2359, 2119, 1713, 1602, 1508, $1437,1376,1322,1240,1175,1152,1079,992,833 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$ §: $3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $5.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}=\mathrm{C}), 7.04(2 \mathrm{H}, \mathrm{d}$, $J=8.81 \mathrm{~Hz}, H-\mathrm{C}(3)), 7.78(2 \mathrm{H}, \mathrm{d}, J=8.81 \mathrm{~Hz}, H-\mathrm{C}(2)) .{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 52.8,56.1\left(\mathrm{CH}_{3}\right), 94.1\left(\mathrm{CH}_{2}\right), 116.0,125.5$, $132.3(\mathrm{CH}), 123.5,127.0,158.0,164.2$ (C). HR-MS (EI) for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$, calcd. 263.0906, found 263.0910.

Methyl 6-methoxymethoxy-1H-indole-2-carboxylate (12). A solution of compound $11(5.26 \mathrm{~g}, 20 \mathrm{mmol})$ in toluene (300 mL) was stirred at reflux for 12 h . The reaction solution was then evaporated in vacuo. Recrystallization from toluene afforded 4.69 g (quant.) of $\mathbf{1 1}$ as a white crystalline. $\mathrm{R}_{\mathrm{f}} 0.56$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50 / 1\right)$. M.p. $106 \sim 107{ }^{\circ} \mathrm{C}$. IR (KBr): 3311, 2952, 2897, 1699, 1629, 1524, 1445, 1253, 1209, 1148, 1121, 1076, 1004, 824. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.93$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.90(1 \mathrm{H}, \mathrm{dd}, J=$ $8.81,2.20 \mathrm{~Hz}, H-\mathrm{C}(5)), 7.10(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-\mathrm{C}(7)), 7.16$ $(1 \mathrm{H}, \mathrm{d}, J=0.92 \mathrm{~Hz}, H-\mathrm{C}(3)), 7.56(1 \mathrm{H}, \mathrm{d}, J=8.81 \mathrm{~Hz}, H-\mathrm{C}(4))$, 8.98 (br, $H-\mathrm{N}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 51.9,56.0\left(\mathrm{CH}_{3}\right), 94.9$ $\left(\mathrm{CH}_{2}\right), 97.5,109.0,113.1,123.4(\mathrm{CH}), 122.7,126.5,137.8$, 156.3, 162.4 (C). MS (EI) m/z $235\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, $61.27, \mathrm{H}, 5.57, \mathrm{~N}, 5.95$. Found: C, $61.19, \mathrm{H}, 5.50$, N, 5.89.

Methyl 3-formyl-6-methoxymethoxy-1H-indole-2-carboxylate (13). To a solution of DMF (3 mL) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL}), \mathrm{POCl}_{3}(1 \mathrm{~mL})$ was dropwised at $0^{\circ} \mathrm{C}$ under Ar atmosphere and stirred for 30 min at the temperature and for further 30 min at r.t. The solution was then cooled to $0^{\circ} \mathrm{C}$ and compound 12 ($1.18 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added little by little. After stirring for 30 min at the temperature and for further 30 min at r.t, the reaction solution was cooled to $0^{\circ} \mathrm{C}$ again, and the reaction was quenched be the addition of saturated $\mathrm{NaHCO}_{3}(30$
mL), followed by stirring for 1 h at r.t. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo and the pale yellow crystalline precipitated was filtered and the filtrate was extracted with AcOEt $(3 \times)$. The combined organic layer was dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue and filtered crystalline was mixed and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane (50%) solution to afford $0.73 \mathrm{~g}(56 \%)$ of $\mathbf{1 3}$ as a pale yellow crystalline. The filtrate was evaporated, and the residue was purified by column chromatography on silica gel ($3.3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to recover 0.47 g of 12 (40% recovery) (recovery yield of $\mathbf{1 3}, 92 \%$). $\mathrm{R}_{\mathrm{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50 / 1\right)$. M.p. $194 \sim 196{ }^{\circ} \mathrm{C}$. IR (KBr): 3174, 1714, 1637, 1577, 1526, 1378, $1360,1248,1213,1147,1078,986,838 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-D6) $\delta: 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.24(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.02(1 \mathrm{H}, \mathrm{dd}, J=8.79,2.20 \mathrm{~Hz}, H-\mathrm{C}(5)), 7.15$ $(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-\mathrm{C}(7)), 8.12(1 \mathrm{H}, \mathrm{d}, J=8.79 \mathrm{~Hz}, H-\mathrm{C}(4))$, 10.57 (s, CHO). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-D6) $\delta: 52.6,55.6\left(\mathrm{CH}_{3}\right), 94.2$ $\left(\mathrm{CH}_{2}\right), 98.1,115.7,123.2,187.6(\mathrm{CH}), 118.7,119.7,131.7$, 136.8, 155.8, 160.5 (C). MS (EI) $m / z 263\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{5}$: C, 59.31, H, 4.98, N, 5.32. Found: C, 59.01, H, 4.98, N, 5.31.

Methyl 3-(2-nitroethyl)-6-methoxymethoxy-1H-indole-2carboxylate (14). Compound $13(1.32 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}$ $(385 \mathrm{mg}, 5.0 \mathrm{mmol})$ was added to 55% solution of MeNO_{2} in $\mathrm{MeOH}(30 \mathrm{~mL})$ and stirred for 48 h at r.t. under Ar atmosphere. The resulting mixture was then added $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and MeOH was removed in vacuo. The aqueous layer was extracted with AcOEt $(2 \times)$, and the organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. This crude compound was dissolved in DMF $(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. To this solution was added $\mathrm{NaBH}_{4}(200 \mathrm{mg})$ little by little and stirred for 1 h . The reaction solution was then neutralized with 1 M HCl and extracted with AcOEt $(2 \times)$. The organic layer was washed with brine $(2 \times)$, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on silica gel $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $1.17 \mathrm{~g}(76 \%)$ of 14 as a white solid. $\mathrm{R}_{\mathrm{f}} 0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50 / 1\right)$. M.p. $122 \sim 123{ }^{\circ} \mathrm{C}$. IR (KBr): 3324, 1690, 1629, 1549, 1459, 1380, 1336, 1254, 1214, 1150, 1101, 1074, 999. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.50(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.76\left(2 \mathrm{H}, \mathrm{t}, J=7.33 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 3.95(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.67\left(2 \mathrm{H}, \mathrm{t}, J=7.33 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 5.22(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.93(1 \mathrm{H}, \mathrm{dd}, J=8.79,2.20 \mathrm{~Hz}, H-\mathrm{C}(5)), 7.04$ $(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-\mathrm{C}(7)), 7.57(1 \mathrm{H}, \mathrm{d}, J=8.79 \mathrm{~Hz}, H-\mathrm{C}(4))$, 10.98 (br, $H-\mathrm{N}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 51.9,56.0\left(\mathrm{CH}_{3}\right), 23.2$, $75.2,94.8\left(\mathrm{CH}_{2}\right), 97.4,113.3121 .0(\mathrm{CH}), 118.1,122.7,123.1$, 136.6, 156.8, 161.8 (C). MS (EI) $m / z 308\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 54.54, \mathrm{H}, 5.23, \mathrm{~N}, 9.09$. Found: C, 54.62, H, 5.14, N, 9.07.

Methyl 3-[2-(benzoylamino)ethyl]-6-methoxymethoxy-1H-indole-2-carboxylate (15). Compound 14 ($124 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{Cl}(107 \mathrm{mg}, 2.0 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(12$ $\mathrm{mL}) . \mathrm{Pd} / \mathrm{C}(10 \%, 12.4 \mathrm{mg})$ was added to this solution and stirred at r.t. for 18 h under H_{2} atmosphere. The resulting mixture was then filtered through Celite, and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and added $\mathrm{Et}_{3} \mathrm{~N}(390 \mu \mathrm{~L} 2.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C} . \mathrm{BzCl}(70 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added to this solution immediately and stirred for 30 min . To the reaction solution, $\mathrm{H}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 x)$, and the combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on silica gel (50\%
AcOEt / n-hexane) to afford $118 \mathrm{mg}(77 \%)$ of $\mathbf{1 5}$ as a white solid. $\mathrm{R}_{\mathrm{f}} 0.41$ (AcOEt/n-hexane 1/1). M.p. $156 \sim 157{ }^{\circ} \mathrm{C}$. IR (KBr): 3313, 2971, 2924, 2853, 1691, 1640, 1542, 1459, 1377, 1257, 1146, 1068, 1016, 461. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.41$ (2H, t, $J=$ $\left.6.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.77(2 \mathrm{H}$, dt, $\left.J=6.97,6.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $5.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.83\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 6.86(1 \mathrm{H}$, dd, $J=8.80,2.20 \mathrm{~Hz}, H-\mathrm{C}(5)), 7.03(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-$ C(7)), 7.32-7.46 (3H, m, H-Ph), $7.59\left(1 \mathrm{H}, \mathrm{d}, J=8.80 \mathrm{~Hz}, \mathrm{H}^{-}\right.$ $\mathrm{C}(4))$, 7.67-7.69 ($2 \mathrm{H}, \mathrm{m}, H-\mathrm{Ph}$), 8.94 (br, $H-\mathrm{N}(1)){ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 51.7,55.9\left(\mathrm{CH}_{3}\right), 24.1,41.2,94.8\left(\mathrm{CH}_{2}\right), 97.4,112.9$, 121.4, 126.8, 128.3, 131.1 (CH), 122.4, 122.7, 123.1, 134.5 , $136.9,156.7,162.8,167.5$ (C). HR-MS (FAB) for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}$ $\left(\mathrm{MH}^{+}\right)$, calcd. 383.1607, found 383.1615.
N-Benzoyl- N-[2-(2-hydroxymethyl-6-methoxymethoxy$1 H$-indol-3-yl)ethyl]amine (16). To a solution of compound 15 $(76.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous THF (2 mL), LAH (75.9 mg , 2.0 mmol) was added little by little at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring for 2 h at the temperature, $\mathrm{H}_{2} \mathrm{O} /$ THF (50%) solution was added carefully to quench the reaction, and the resulting mixture was filtered to remove the inorganic salt. The filtrate was extracted with $\operatorname{AcOEt}(3 \times)$, and the organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on silica gel (AcOEt) to afford $63.0 \mathrm{mg}(89 \%)$ of $\mathbf{1 6}$ as a white solid. $\mathrm{R}_{\mathrm{f}} 0.42$ (AcOEt). M.p. 89~92 ${ }^{\circ} \mathrm{C}$. IR (nujor): 3033, 1644, 1575, 1530, 1147, 1074, 1005, 917, 709. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta:$ $3.05\left(2 \mathrm{H}, \mathrm{t}, J=6.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 3.45(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.59\left(2 \mathrm{H}, \mathrm{t}, J=6.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 4.69$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.73(1 \mathrm{H}, \mathrm{dd}, J=$ $8.80,2.20 \mathrm{~Hz}, H-\mathrm{C}(5)), 7.01(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-\mathrm{C}(7)), 7.36-$ $7.48(3 \mathrm{H}, \mathrm{m}, H-\mathrm{Ph}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8.80 \mathrm{~Hz}, H-\mathrm{C}(4)), 7.70-$ $7.73(2 \mathrm{H}, \mathrm{m}, H-\mathrm{Ph}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 56.1\left(\mathrm{CH}_{3}\right), 24.9$, $42.3,56.4,94.8\left(\mathrm{CH}_{2}\right), 99.4,111.4,120.0,128.2,129.5,132.5$ (CH), 110.3, 125.1, 135.4, 135.8, 137.9, 155.1, 170.4 (C). HRMS (FAB) for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$, calcd. 354.1580, found 354.1611.

N -Benzoyl- N -[2-(2-formyl-6-methoxymethoxy-1 H -indol-3-yl)ethyl]amine (17). Compound 16 ($70.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and $\mathrm{MnO}_{2}(17.4 \mathrm{mg}, 2.0$ mmol) was added to this solution under Ar atmosphere. After stirring for 2 h at r.t., the reaction mixture was then filtered through Celite, and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo, and the residue was purified by column chromatography on silica gel ($50 \% \mathrm{AcOEt} / n$-hexane) to afford 70.2 mg (quant.) of $\mathbf{1 7}$ as a white solid. $\mathrm{R}_{\mathrm{f}} 0.57$ (AcOEt/n-hexane $2 / 1$). M.p. $152 \sim 153{ }^{\circ} \mathrm{C}$. IR (KBr): 3419, 3296, 1646, 1546, 1439, 1310, 1232, 1198, 1148, 1073, 1013, 698. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 3.36(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.66(2 \mathrm{H}, \mathrm{t}$, $\left.J=6.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.80$ ($1 \mathrm{H}, \mathrm{dd}, J=8.80,2.20 \mathrm{~Hz}, H-\mathrm{C}(5)), 7.03(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-$ $\mathrm{C}(7)), 7.36-7.50(3 \mathrm{H}, \mathrm{m}, H-\mathrm{Ph}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8.80 \mathrm{~Hz}, H-$ $\mathrm{C}(4))$, 7.64-7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ph}$), $9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}){ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 8: $56.3\left(\mathrm{CH}_{3}\right), 24.6,42.7,95.8\left(\mathrm{CH}_{2}\right), 98.5,114.1$, 123.3, 128.2, 129.5, 132.6, 181.6 (CH), 124.2, 127.9, 134.0, 135.6, 140.8, 159.1, 170.4 (C). HR-MS (FAB) for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left(\mathrm{MH}^{+}\right)$, calcd. 353.1501 , found 353.1504 .
N-Benzoyl- N -[2-(6-methoxymethoxy-2-vinyl-1 H -indol-3yl)ethyl]amine (2).To a suspension of $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}(179 \mathrm{mg}, 0.5$ mmol) in anhydrous THF (1 mL), KHMDS $(0.5 \mathrm{M}$ in toluene, 1.0 mL) was dropwised at r.t. under Ar atmosphere. After
stirring for 15 min , this solution was dropwised to a solution of compound 17 ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) in anhydrous THF (1 mL) under Ar atmosphere, and this reaction mixture was stirred at reflux for 18 h . The resulting solution was then quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layer was washed with brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography on aluminium oxide ($50 \% \mathrm{AcOEt} / n$ hexane) to afford 28.5 mg (81%) of $\mathbf{2}$ as a colorless oil (unstable to light). $\mathrm{R}_{\mathrm{f}} 0.54$ (AcOEt/n-hexane 1/1). IR (neat): 3479,3115 , 3041, 2841, 1729, 1574, 1539, 1345, 1309, 1248, 1149, 1072, $1004,898,845,805,694 .{ }^{~}{ }^{\mathrm{H}}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.09(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.60 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 3.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.71(2 \mathrm{H}$, $\left.\mathrm{dt}, J=6.60,6.60 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 5.18(1 \mathrm{H}, \mathrm{d}, J=11.36 \mathrm{~Hz}$, $\left.-\mathrm{CH}=\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.41(1 \mathrm{H}, \mathrm{d}, J=17.60$ $\left.\mathrm{Hz},-\mathrm{CH}=\mathrm{CH}_{\mathrm{a}} H_{b}\right), 6.13\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBz}\right), 6.80(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.11.36,17.60 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.84(1 \mathrm{H}, \mathrm{dd}, J=8.80,2.20 \mathrm{~Hz}, H-$ $\mathrm{C}(5)), 7.05(1 \mathrm{H}, \mathrm{d}, J=2.20 \mathrm{~Hz}, H-\mathrm{C}(7)), 7.34-7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\mathrm{Ph}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8.80 \mathrm{~Hz}, H-\mathrm{C}(4)), 7.62-7.65(2 \mathrm{H}, \mathrm{m}, H-\mathrm{Ph})$, 8.04 (br, $\mathrm{H}-\mathrm{N}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ 8: $55.9\left(\mathrm{CH}_{3}\right), 23.8,40.5$, 95.2, $110.9\left(\mathrm{CH}_{2}\right), 97.9,111.1,119.5,125.1,126.8,128.4,131.3$ (CH), 112.5, 123.9, 132.8, 134.5, 137.0, 154.8, 167.5 (C). HRMS (EI) for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$, calcd. 350.1630, found 350.1620.

Acknowledgement. The present study was financially supported in part by a Grant-in- Aid for Scientific Research (NO. 17390030 to MO), Kumamoto Technology and Industry Foundation (to YO), and Shorai Foundation for Science and Technology (to MO).

REFERENCES

[1] Kam, T.-S.; Loh, K.Y.; Wet, C. J. Nat. Prod. 1993, 56, 1865.
[2a] Umezawa, K.; Taniguchi, T.; Tomi, M.; Ohse, T.; Tatsumi, N.; Yamamoto, T.; Koyano, T.; Ishizuka, M. Drugs. Exptl. Clin. Res. 1996, 22, 35. [b] Amino, N.; Ohse, T.; Kayano, T.; Umezawa, K. Anticancer Res. 1996, 16, 55. [c] Hirosawa, T.; Kondo, K.; Hishiki, T.; Koshizawa, S.; Umezawa, K.; Nagakawa, A. Neurosci. Lett. 1997, 238, 115. [d] Irie, T.; Kubushiro, K.; Suzuki, K.; Tsukazaki, K.; Umezawa. K.; Nozawa, S.Anticancer Res. 1999, 19, 3061.
[3a] Umezawa, K; Hiroki, A.; Kawakami, M.; Naka, H.; Takei, I.; Ogata, T.; Kojima, I.; Koyano, T.; Kowithayakorn, T.; Pang, H. -S.; Kam, T. -S. Biomed. Pharmacother. 2003, 57, 341. [b] Takatsuka, H.; Umezawa, K. Biomed. Pharmacother. 2004, 58. 610. [c] Ogata, T.; Li, L.; Yamada, S.; Yamamoto, Y.; Tanaka, Y.; Takei, I.; Umezawa, K.; Kojima, I. Diabetes 2004, 53, 2596. [d] Kojima, I.; Umezawa, K. Int. J. Biochem. Cell. Biol. 2006, 38, 923. [e] Kitamura, R.; Ogata, T.; Tanaka, Y.; Motoyoshi, K.; Seno, M.; Takei, I.; Umezawa, K.; Kojima, I. Endocr. Journal. 2007, 54, 255.
[4] Kam, T. -S.; Pang, H. -S.; Lim, T. -M. Org. Biomol. Chem. 2003, 1,1292 .
[5] Alam, A.; Takaguchi, Y.; Ito, H.; Yoshida, T.; Tsuboi, S. Tetrahedron 2005, 61, 1909.
[6] Anuradha, V.; Srinivas, P. V.; Aparna, P.; Rao, J. M. Tetrahedron Lett. 2006, 47, 4933.
[7] Magnus, P.; Gazzard, L.; Hobson, L.; Payne, A. H.; Rainey, T. J.; Westlund, N.; Lynch, V. Tetrahedron 2002, 58, 3423.
[8] Hemetsburger, H.; Knittel, D.; Weidmann, H. Monashefte für Chemie 1969, 100, 1599.
[9] Jung, S. -H.; Cho, S. -H.; Dang, T. H.; Lee, J. -H.; Ju, J. -H.; Kim, M. -K.; Lee, S. -H.; Ryu, J. -C.; Kim, Y. Eur. J. Med. Chem. 2003, 38, 537.
[10] Bennasar, M. -L.; Roca, T.; Ferrando, F. J. Org. Chem. 2005,
[11a] Young, E. H. P. J. Chem. Soc. 1958, 3493. [b] Urrutia, A.; Rodríguez, J. G. Tetrahedron, 1999, 55, 11095. [c] Aulaskari, P.; Ahlgrén, M.; Vainiotalo, P.; Pohjala, E. J. Heterocyclic. Chem. 2000, 37,
87. [d] Aulaskari, P.; Pohjala, E.; Vainiotalo, P. Synth. Commun., 1997, 27, 2627.
[12] Liu, J. -J.; Hino, T.; Tsuruoka, A.; Harada, N.; Nakagawa, M. J. Chem. Soc., Perkin Trans. 1 2000, 3487.

